Nonnegative eigen functions of Laplace-Beltrami operators on symmetric spaces
نویسندگان
چکیده
منابع مشابه
Discrete Laplace-Beltrami operators and their convergence
The convergence property of the discrete Laplace–Beltrami operators is the foundation of convergence analysis of the numerical simulation process of some geometric partial differential equations which involve the operator. In this paper we propose several simple discretization schemes of Laplace–Beltrami operators over triangulated surfaces. Convergence results for these discrete Laplace–Beltra...
متن کاملInverse-Consistent Surface Mapping with Laplace-Beltrami Eigen-Features
We propose in this work a novel variational method for computing maps between surfaces by combining informative geometric features and regularizing forces including inverse consistency and harmonic energy. To tackle the ambiguity in defining homologous points on smooth surfaces, we design feature functions in the data term based on the Reeb graph of the Laplace-Beltrami eigenfunctions to quanti...
متن کاملConvergent discrete Laplace-Beltrami operators over surfaces
The convergence problem of the Laplace-Beltrami operators plays an essential role in the convergence analysis of the numerical simulations of some important geometric partial differential equations which involve the operator. In this note we present a new effective and convergent algorithm to compute discrete Laplace-Beltrami operators acting on functions over surfaces. We prove a convergence t...
متن کاملAnisotropic Laplace-Beltrami Operators for Shape Analysis
This paper introduces an anisotropic Laplace-Beltrami operator for shape analysis. While keeping useful properties of the standard Laplace-Beltrami operator, it introduces variability in the directions of principal curvature, giving rise to a more intuitive and semantically meaningful diffusion process. Although the benefits of anisotropic diffusion have already been noted in the area of mesh p...
متن کاملL P {l Q {estimates for Functions of the Laplace{beltrami Operator on Noncompact Symmetric Spaces, Ii *
In this paper we continue the study of functional calculus for the Laplace{ Beltrami operator on symmetric spaces of the noncompact type begun in 3]; this paper is dedicated to a study of the Poisson semigroup, which we deene shortly. Let G and K be a connected noncompact semisimple Lie group with nite center and a maximal compact subgroup thereof, and consider the symmetric space G=K; also den...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of the American Mathematical Society
سال: 1968
ISSN: 0002-9904
DOI: 10.1090/s0002-9904-1968-11924-x